ON THE ILL-POSEDNESS AND STABILITY OF THE RELATIVISTIC HEAT EQUATION

A.L. García Perciante y O.R. Reula

THE SYSTEM

The setting is a space-time manifold (M, g) and a unit, time-like vector field u^a

The variable is a scalar field T

There is a dependent, auxiliary vector field q^a , perpendicular to u^a

$$u^{a}\nabla_{a}T = \nabla^{a}q^{a}$$

$$\sigma q_{a} = h_{a}{}^{b}\nabla_{b}T \qquad (h_{a}{}^{b} = \delta_{a}{}^{b} + u_{a}u^{b})$$

Assume: Fourier law is valid at a surface perpendicular to the *fluid* four velocity

ONE DIMENSIONAL CASE

Heat Equation

$$\sigma \frac{dT}{dt} = \partial_x^2 T$$

$$T = T_0 e^{i(\omega t + kx)} \qquad \qquad \omega = \frac{ik^2}{\sigma}$$

Stable and decaying (parabolic behavior) Well posed Initial Value Problem for that surface.

IF WE PRETEND TO USE ANOTHER HYPERSURFACE:

$$u^a = \gamma(t^a + \beta^a)$$

$$\sigma\gamma(\partial_t + \beta\partial_x)T = \beta^2\gamma^2\partial_t^2 + 2\gamma^2\beta\partial_t\partial_x + \gamma^2\partial_x^2$$

$$i\sigma(\omega + \beta k)T = -\gamma(\beta^2 \omega^2 + 2\beta \omega k + k^2)T$$

 $k \text{ fixed}, \beta \to 0$

$$\omega_+ \to \frac{ik^2}{\sigma}$$

$$\omega_{-} \to \frac{-i\sigma + 2\beta\gamma k}{\beta^2\gamma}$$

ONE DIMENSIONAL CASE

$$u^a = \gamma(t^a + \beta^a)$$

$$\sigma\gamma(\partial_t + \beta\partial_x)T = \beta^2\gamma^2\partial_t^2 + 2\gamma^2\beta\partial_t\partial_x + \gamma^2\partial_x^2$$

$$i\sigma(\omega + \beta k)T = -\gamma(\beta^2 \omega^2 + 2\beta \omega k + k^2)T$$

 β fixed, $k \to \infty$

$$\omega_{\pm} = -\frac{k}{\beta} \pm \sqrt{\frac{\sigma}{\beta^3}} \frac{1}{\gamma} (1+i)\sqrt{k}$$

In more dimensions growth as k

CHARACTERISTIC SURFACE: SIMPLE CASE

CHARACTERISTIC SURFACE: WRAPPED

GENERIC CASE: MORE DIMENSIONS

In the case the vector u^a is not surface forming we even have a local problem, we can not, even locally, find a hypersurface where the Cauchy problem is well posed.

The infinite propagation speed in the parabolic theories accepts only Cauchy data in a characteristic surface.

This is the reason why we need second order, hyperbolic, theories.

MAKINGITHYPERBOLIC

$$u^{a}\nabla_{a}T = \nabla^{a}q_{a}$$

$$\epsilon u^{b}\nabla_{b}q_{a} + q_{a} = \frac{1}{\sigma}h_{a}{}^{b}\nabla_{b}T \qquad (h_{a}{}^{b} = \delta_{a}{}^{b} + u_{a}u^{b})$$

Hyperbolic when:

$$\sigma\epsilon = v_{ss}^{-2} > \beta^2$$

Tension between ϵ small and Einstein Causality

Question: How big does ϵ (or β^2) has to be according to the lack of surface forming property of u^a ?

MAKINGITHYPERBOLIC

Question: How big does ϵ (or β^2) has to be according to the lack of surface forming property of u^a ?

$$w_{abc} := u_{[a} \nabla_b u_{c]} ?$$

Seems to be a global property of the fluid congruence.

CONCLUSIONS

- Parabolic equations do not work for lack of characteristic flats to form hyper surfaces.
- Local-global aspects.
- Hyperbolizations need to have slow enough velocities (tension with fast decay?)
- If propagations speeds are slow enough, then the problem is back to GR and the light cone structure.
- Mostly a mathematical question.

THANK YOU FOR YOUR ATTENTION